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The kinetics of sintering of supported metal catalysts is given for the rate of decay of surface area 
and the average particle size for the case where the prevailing mechanism of sintering is the atom 
diffusion. An examination of the adequacy of the central supposition of Chakraverty for typical 
sintering systems leads to an alternate expression for the driving force for the growth ofparticles and 
to the other results. The rate expression presented for the surface area is distinctly different from 
that of Ruckenstein and Pulvermacher which was obtained for the mechanism of crystallite 
migration. Comparisons are made between predicted values and experimental data. Results 
obtained indicate that the power n in the expression for the decay of surface area may not be used 
for the discrimination of one mechanism from the other. 

INTRODUCTION 

The phenomena of the growth of metal 
particles on a support have received con- 
siderable attention because of the impor- 
tance of the surface area in the design and 
use of supported metal catalysts. Two 
mechanisms have been put forward to ex- 
plain the particle growth and subsequent 
loss of surface area through sintering. The 
mechanism of atom diffusion (1-6) regards 
the difference in the interfacial energy be- 
tween particles as the driving force for the 
particle growth. According to the mecha- 
nism, therefore, the particles redistribute 
themselves to minimize the overall interfa- 
cial energy of particles resulting in the 
growth of larger particles at the expense of 
smaller particles. The mechanism of crys- 
tallite migration (7-10) views the sintering 
process as a sequence of events initiated by 
the crystallite migration followed by colli- 
sion and coalescence. The migration was 
considered to be due to the thermal motions 
of the atoms at the metal-support interface. 
Granquist and Buhrmam (I I-13) examined 
particle size distribution curves and con- 
cluded that the two mechanisms predicted 
distinctly different distributions. They 
found that the distribution curves could be 

represented by the log-normal distribution 
of particles. 

The identification of the prevailing mech- 
anism has been based on two indirect 
methods and one direct method. One of the 
indirect methods involves the use of the 
shape of the particle size distribution. Ac- 
cording to the result obtained by Granquist 
and Buhrman, a log-normal size distribu- 
tion of particles would point to the coales- 
cence as the prevailing mechanism. Wanke 
(/4), however, found that certain initial 
distributions gave log-normal distribution 
upon sintering via interparticle transport. 
The other indirect method involves the use 
of the time dependence of the change of the 
surface area 

dS/dt = -kS”, (1) 

where S is the exposed surface area. The 
atomic diffusion model predicts n values 
between 3 and 5 depending on the rate- 
limiting step whereas the crystallite migra- 
tion model predicts n values ranging from 
<2 to > 13 depending on the dependence of 
the diffusion coefficients and the rate con- 
stants on the crystallite size. The direct 
method involves the observation of actual 
crystallite migration. 

The mechanism of atomic diffusion was 
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formally treated by Chakraverty (I) based quences of not making that supposition. 
on the classical Oswald ripening treatments This leads to a conclusion that Eq. (1) does 
of Lifschitz and Slyozov (16) and of not necessarily represent the change of 
Wagner (17). Wynblatt and Gjostein (5, 6) surface area with time when the prevailing 
extended the results to the case of the mechanism is the atom diffusion and subse- 
nucleation-inhibited growth. The central quently that the value of n may not be used 
supposition of the theory put forward by to identify the prevailing mechanism. We 
Chakraverty (1) (and subsequently used by then propose an expression for the decay of 
Wynblatt and Gjostein) was that “the su- the exposed surface area for the case where 
persaturation is small.” The supersatura- the prevailing mechanism is the atom diffu- 
tion was defined as the ratio of average ad- sion. Equation (1) was originally developed 
atom concentration to the equilibrium by Ruckenstein and Pulvermacher (7) for 
concentration. The consequence of that the mechanism of crystallite migration. 
central supposition is that the driving force 
for the particle growth can be expressed as ADEQUACY OF THE SUPPOSITION OF 

a simple difference between the inverse of a CHAKRAVERTY 

particle size and that of the critical size, the The formal treatment of Chakraverty (1) 
size of the particle which neither grows nor as rewritten by Wynblatt and Gjostein (5) 
shrinks. In this paper, we examine this in terms of ad-atom concentration yields 
central supposition and explore the conse- the following result for the rate of growth: 

dr y= [2ma/3’ sin 8](2?rD)/[In (L/r sin e)] 
dt 2ma/3’ sin 8 + (2rD)/[ln (L/r sin f3)] x e {exp (g) - exp (g)}, (2) 

where 
r= 
t= 
a= 
8= 

D= 

particle radius of curvature, 
time, 

Qs = migration energy of an ad-atom on 
the substrate. 

interatomic spacing, 
wetting angle, 

L= 

cseq = 

ad-atom diffusivity over the sub- 
strate (a%,exp( - H,,,“/kT)), 
distance from the center of particle 
at which the ad-atom concentration 
reaches its far-field concentration, 
concentration of ad-atoms on the 
substrate, 

The central supposition of Chakraverty (1) 
essentially enables one to rewrite the quan- 
tity inside the bracket of Eq. (2) as 

exp (g) - exp ($) 

Cl= 
CY, = 
-Y= 
k= 
T= 
r* = 

p’ = 

v, = 

volume of an ad-atom, 
volume shape factor, 
surface energy of the particle, 
Boltzmann constant, 
absolute temperature, 
size of the particle which neither 
shrinks nor grows in the particle 
size distribution, critical size, 
v, exp( - fJss/kTh 
vibrational frequency of an ad-atom 
on the substrate 

We wish to examine the adequacy of this 
supposition. The critical size r* can be 
related to the mean size F (17, 18) by 

? = br* , (4) 

where b is a constant close to unity. Since 
the typical particle size distributions are 
such that the majority of particles belongs 
to the size range of (0.5f < r < 2F), we 
compare the magnitude of the left-hand side 
(LHS) of Eq. (3) with that of the right-hand 
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side (RHS) for various values of for the critical size, E, is less than 0.1. 
(2yR/(kTr*)) as a function of r in the size However, the supposition is not adequate 
range of (0.5" < r < 2r*). For this, we when E becomes larger than, say, 0.2 as 
define the following quantities: shown in Fig. 1 for E = 0.5. The dashed line 

r 
represents the magnitude calculated from 

’ E r*(f) (5) the RHS of Eq. (7) and the solid line from 

2Yfl 
the LHS of Eq. (7). Even though not 

E=kTY*. 
(6) shown, the error in using the RHS of Eq. 

(7) for the calculation of the magnitude can 
If we use the definitions, we can rewrite be as high as 25% even for E = 0.2. 
Eq. (3) as The importance of this fact lies in the fact 

exp(e) - exp(e/p) = ~(1 - l/p). (7) 

Computational results for the magnitudes 
are shown in Figs. 1 and 2. The difference 
given by Eq. (7) is a measure of the magni- 
tude of the concentration difference (refer 
to Eq. (2)), which is the driving force for the 
growth or shrinkage of particles. Results in 
Fig. 1 show that this magnitude is almost 
the same for the scale chosen when E = 0.1 
whether the magnitude is calculated from 
the RHS or the LHS of Eq. (7). Therefore, 
the supposition of Chakraverty is adequate 
as long as the dimensionless surface energy 

that for some of the supported metal cata- 
lysts of interest, the value of e is typically in 
the range of 0.1 to 1 under typical sintering 
conditions. The sintering study of Pt crys- 
tallites on alumina by Wynblatt (6), for 
instance, was in the E range of 0.3 to 0.8 at 
1000°K. The sintering study of Pt crystal- 
lites on amorphous SO, by Chen and 
Schmidt, for another, was in the range of 
0.35 to 0.75 at 1000°K. The critical size was 
of the order of 5 to 15 nm. Recognizing this 
inadequacy of Chakraverty’s supposition 
for the typical sintering problems, we set 
out to develop an expression for the con- 

,/ /- 
,’ E = 0.5 I’ , 

,I--- /- 

/’ 

I 

/’ f ’ E = 0.1 

From Gibbs-Thompson re, 
- LHS of Eq. 7 

--- RHS of Eq. 7 

------- Ea. 3 

I I I I 
1.2 1.6 2.0 2.4 

P = r/r* 

FIG. 1. A measure of magnitude of concentration difference determined from different relationships, 
E = 0.5 and l = 0.1. 
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centration difference which would be good rewrite the quantity inside the bracket of 
up to E of 1. To obtain this expression, we Eq. (2) as 

exP kz) - exp (g) = exp ($$){ 1 - exp p$ (1 - -+)I} 

z - [exP ($L$)]{$$ (1 - r’;>] = - (+) l exp(c), (8) 

where the exponential term inside the 
bracket of the second expression was ex- 
panded in Taylor series for the approxima- 
tion and the definitions of p and l were used 
for the last expression. The magnitude of 
concentration difference given by Eq. (8) is 
shown in Figs. 1 and 2 as the dotted lines. 
The results show that Eq. (8) is adequate up 
to E of 0.8 and possibly up to 1 for the range 
of size shown. 

RATE OF DECAY OF SURFACE AREA 

We now utilize the result obtained for the 
concentration difference [Eq. (S)] in Eq. (2) 
for the rate of growth: 

dr 
z= - 9 (1 - rI;> ew f$+), (9) 

r 

FIG. 2. A measure of magnitude of concentration 
difference determined f?om different relationship, L = 
1. 

where 

AD = 
DyRT,“q 

cqkT In [L/r sin /3]’ (94 

In accordance with the argument of 
Wynblatt and Gjostein (5), the resistance 
across the edge of the particle was ne- 
glected in rewriting Eq. (2). It is seen that 
Eq. (9) reduces to the result of Wynblatt 
and Gjostein when the value of E is small. 

If we letf(r, t) be the number of particles 
in the size range between r and r + dr, the 
number balance (16) can be written as 

g+;f$ =o. ( 1 (10) 

In terms of the dimensionless size p defined 
by Eq. (5), the number balance can be 
rewritten as 

%+” f,,, =o, ( > 
!!e 

ap (11) 

where f,(p, t) is the number of particles in 
the dimensionless size range between p and 
p + dp. Utilizing the definition of p [Eq. 
(5)], the growth rate in terms of the dimen- 
sionless size can be obtained from Eq. (9): 

dp= _ prT _ AD(1 - P)exp 
dt r* p3(r*j4 

(12) 

where 

(12a) 

The total number of particles N(t), the 
surface area S(t), and the total volume of 
particles C#J which is conserved are given by 

N(t) = J-r f&P, (13) 
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S(t) = 1; kw*p>*f~p~ (14) 

4 = const = I ,z (w*P)“f&A (15) 

where [Y* is the shape factor for the surface 
area. It is noted that the particle of the 
dimensionless size p has the surface area 
associated with it of (cy*r*p)*. As was done 
by Chakraverty (I) and Ruckenstein and 
Pulvermacher (7), we assume that the dis- 
tribution function f, is separable such that 

.MP, t) = h(t) g(p). (16) 

Utilizing Eq. (16) in Eqs. (13) through (15), 
we obtain 

(26) 

The relationship between the 
and the critical size can be 
using Eq. (18) in (26): 

r*- B3Q) 1 - 

( )O B, i?’ 

surface area 
obtained by 

(27) 

If we utilize Eqs. (17), (25), and (27) in Eq. 
(23), we obtain 

dN -= 
dt 

x NS4 exp B34 [ 1 !&Es . (28) 

Finally, we use Eq. (26) in (28) to obtain 

S(t) = 2 N(r*)*, (19) 
1 

where 

B, = 
I ,z g(pMps (20) 

B2 = Iox (alp)3gWp, (21) 

B3 = 1; (w)*dp)dp. (22) 

If we integrate Eq. (11) with respect to p 
from zero to infinity, we obtain 

w}, (23) 

where 

A, = 
I 
offi $ bddldp, 

A2 = 6 $ [+dp)] dp. (24) 

From Eq. (18), we obtain 

i* -= 
r* -3N-‘N. (25) 

We relate the surface area to the total 
number of particles using Eqs. (18) and (19) 
to obtain 

ds 
dt= 

- KS5 exp(mS), (2% 

where 

K(T) = (3;2>A,) 

x (j$)‘(~)*(g$“, (30) 

(31) 

Consider the temperature dependence of 
the quantities K and m . The terms Ai and Bi 
in the expression for K are integrals ofg(p). 
While a full solution of the size distribution 
is not attempted here, it is nevertheless 
possible to ascertain the temperature de- 
pendence of g(p) by examining a solution 
for g(p) obtained by Chakraverty (I), which 
corresponds to our case when E [Eq. (12a)] 
is much less than unity. A solution for g(p) 
obtained by Chakraverty [Eq. (25) in Ref. 
(Z)] does not contain any temperature-de- 
pendent terms. This leaves AD as the sole 
term in the expression for K that is depen- 
dent on temperature. Utilizing Eq. (9a) for 
AD, then, the temperature dependence of K 
can be expressed as 

K = kJT-’ exp(-E,/kT), (32) 



where 

E, = H, + H,,,s. Wb) 

The temperature dependence of the ad- It is noted that the value of It is not arbitrary 
atom concentration on the substrate C,‘q but rather fixed as shown in Eq. (34). 
which would be in equilibrium with an 
infinite-sized particle was expressed in Eq. AVERAGE PARTICLE SIZE 

(32a) as Before we proceed to derive an expres- 

Cseq = k exp(-HJkT), 
sion for the change of average crystallite 
size with time, we apply Eq. (34) to the data 

where the free energy in the exponential obtained by Richardson and Cump (19) on 
was approximated by the enthalpy H,. The nickel catalyst on silica sintered in helium. 
quantity Hms in Eq. (32b) is the activation They obtained crystallite size distributions 
energy for the migration of an ad-atom. We using a magnetic granulometry method 
note that the term $ in Eq. (32a) is the total (20). Illustration of the use of Eq. (34) is 
metal volume [Eq. (15)], which would be one of the purposes of considering the data. 
conserved and therefore constant so long as The other is to make a point that the value 
the metal density does not change of n in Eq. (1) may not be used for the 
significantly with temperature in the tem- purpose of determining which mechanism 
perature range of typical sintering experi- dominates the sintering process. If the crys- 
ments. Therefore, the term $I can be con- tallite growth were due to the atom migra- 
sidered relatively constant for a given tion, the substrate-diffusion rather than the 
catalyst system. Applying the same argu- vapor-phase transport would dominate the 
ment for $ to Eq. (31), the temperature transport process at the temperature of 
dependence of m is due to /3 which is sintering (<600”(Z). We write Eq. (34) as 
inversely proportional to temperature [Eq. follows: 
(12a)]. For a small temperature range, 
therefore, m may be considered constant. dS 

dt= - KS5 exp(m’S/S,), (36) 
Similar derivations lead to the following 

expression for the case where the interpar- where So is the initial exposed surface area 
title transport takes place through the va- and m’ = mS,. For the analysis of the data, 
por phase: we rewrite Eq. (36) as 

dS 
so dS 

dr= - K’S3 exp(mS). (33) I 
(37) s S5 exp(m’(S/&)) = Kt’ 

The main conclusion of this section is For the right value of m ’ , then, a plot of the 

that the rate of decay of the exposed sur- left-hand side of Eq. (37) against time should 

face area of metal is given by an equation of yield a straight line through the origin with 

the form the slope of K. If we use the value of m ’ at 
the midpoint of the experimental tempera- 

dS dt = KS” exp(mS) (34) ture range, say, 800°K for the sintering 
temperature range used by Richardson and 

IZ = 5 for substrate-diffusion transport Crump (19), we may neglect the tempera- 
II = 3 for vapor-phase transport ture dependence of m ’ and the value of the 

when the prevailing mechanism for sinter- 
ing is the atomic diffusion. This result con- 
trasts the equation developed by Rucken- 
stein and Pulvermacher (7) for the sintering 
mechanism of the crystallite migration: 
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chosen m ’ could be considered constant for 
different sintering temperatures. Based on 
the sintering data of Richardson and Crump 
(Fig. 4 of their article) and Eq. (37), we 
determined K values at different sintering 
temperatures with the chosenm’ value of 3. 
The corresponding Arrhenius plot is shown 
in Fig. 3. The apparent activation energy 
was determined from the plot to be 154 
(kJ/mole). Because of the high apparent 
activation energy, the effect of T-’ in Eq. 
(32) is negligible. Using the K values given 
by the straight line in Fig. 3, the normalized 
surface area (S/S,) were calculated and 
compared with their experimental data. 
The goodness of the fit was comparable to 
that of the fit obtained by Richardson and 
Crump. They used Eq. (35) for their fit. 
While only the direct observation, as was 
done by Baker et al. (22), can conclusively 
tell whether the dominating mechanism is 
the crystallite migration or the atom ditfu- 
sion, the result of the present analysis can 
be used if so desired to argue for the 
mechanism of atom diffusion. It should be 
recognized, however, that this example 
was treated to show that the value of n may 
not be used for the purpose of discriminat- 
ing one mechanism from the other and not 
to argue for or against the mechanism of 
crystallite migration. The dominating 
mechanism for the sintering studied by 
Richardson and Crump may indeed be that 
of crystallite migration. 

(l/T)x lo3 K-' 

FIG. 3. An Arrhenius plot for the sintering data of Ni 
(experimental data from Richardson and Grump (19)). 

The dimensionless surface energy for the 
critical size E [Eq. (12a)] for the nickel 
system being considered is approximately 
1.5 at 873°K and 1.9 at 773°K if we use the 
surface energy of Ni at 1470°C (21), which 
is 1735 erg/cm*. In view of the conclusion 
made in the previous section, one might 
question the applicability of Eq. (36) to the 
nickel sintering being considered. How- 
ever, the size distributions for this system 
are relatively sharp such that the majority 
of the particles belongs to the dimension- 
less size range of 0.9 < p (‘r/r*) < 1.1 at 
773°K and 0.8 < p < 1.5 at 873°K [Fig. 2 
and3ofRef.(Z9)].IfwerefertoFig. lor2, 
we see that the error becomes small as p 
approaches unity. Therefore, Eq. (36) can 
be applied to this system. 

The growth rate of the critical size can be 
obtained by substituting Eq. (27) into Eq. 
(29) for the case of substrate-diffusion 
transport: 

dr* -= 
dt & exp(p/r*), (38) 

where 

Kr = WG#J/B~)~. (384 

Since the average particle size is related to 
the critical size by Eq. (4) [b = 1.03 for the 
substrate-diffusion transport (18) and b = 
8/9 for the vapor-phase transport (17)], we 
have for the average particle size 

(39) 

where I? = Krb4. We apply Eq. (39) to the 
growth vs time data obtained by Chen and 
Schmidt (15). In particular, we apply the 
equation to the data given in Fig. 7 of their 
article for the sintering of Pt crystallite on 
amorphous SiO,. The value of e at 650°C is 
around 0.5 [y = 2100 erg/cm* (5)]. The 
value of p is 4.88 nm. Therefore, we have 
from Eq. (39). 

(F in nm). (40) 
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We fit the data of Chen and Schmidt (15) 
using Eq. (40) by choosingK values and the 
results are given in Fig. 4 along with the 
experimental data. The value of K chosen 
for the sintering in N, is 650 (nm)4/hr and in 
air 4000 (nm)4/hr. It is seen that Eq. (40) 
represents the experimental data fairly 
well. Chen and Schmidt used an equation of 
the form of Eq. (1) and found the n value to 
be 6 for the sintering in air and 10 in N,. 

We also attempted to apply Eq. (39) to 
the sintering data obtained by Wynblatt (6) 
for the sintering of Pt crystallite on alu- 
mina. They found that their results in 0, 
could be well represented by the nuclea- 
tion-inhibited atomic diffusion model with 
PtO, as the transport species. Our attempts 
revealed that their data could not be well 
represented by Eq. (39). This fact seems to 
render credence to the use of the nuclea- 
tion-inhibited growth model for their sinter- 
ing system. 

CONCLUSION 

The rate of decay of the exposed surface 
area of the supported metal catalysts, when 
the mechanism of sintering is the atom 
diffusion, is given by an equation of the 
form 

dS 
x= - KS” exp(mS), 

where n is 5 for the case of substrate- 
ditTusion transport and 3 for that of vapor- 
phase transport. In contrast, Ruckenstein 

4 6 

tine (hi-) 

FIG. 4. Growth of average particle size (data from 
Chen and Schmidt (IS)). 

and Pulvermacher (7) obtained an equation 
of the form 

dS 
dt= - K.J”E 

for the mechanism of crystallite migration. 
The results presented here apply up to the E 
value [Eq. (6)] of unity for typical size 
distributions. For sharper size distribu- 
tions, they apply to higher values of L. The 
majority of sintering systems of interest 
belongs to this range of e for typical sinter- 
ing conditions. The temperature depen- 
dence of the rate constant K is mainly due 
to the temperature dependence of the diffu- 
sivity and the equilibrium concentration of 
an infinite-sized particle. The quantity m is 
a weak function of temperature and may be 
taken constant for a small temperature 
range. Results obtained indicate that the 
value of n in Eq. (1) may not be used for the 
purpose of discriminating one mechanism 
from the other. 
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